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Abstract 

 We present a novel approach to modeling stochastic multiphase flow problems, for 

example NAPL flow, in a heterogeneous subsurface medium with random soil properties, 

in particular, with randomly heterogeneous intrinsic permeability and soil grain size. A 

stochastic model for steady state water-oil flow in two-dimensional random field is 

developed using the Karhunen-Loeve Moment Equation (KLME) approach and is 

numerically implemented.  An exponential model is adopted to define the constitutive 

relationship between phase relative permeability and capillary pressure. The log-

transformed intrinsic permeability Y(x) and soil pore size distribution β(x) are assumed to 

be Gaussian random functions with a separable exponential covariance function. The 

perturbation part of these two log-transformed soil properties is then decomposed into an 

infinite series based on a set of orthogonal normal random variables{ }nξ . The phase 

pressure, capillary pressure and phase mobility are decomposed by polynomial 

expansions and perturbation method.  Combining these expansions of Y(x), β(x) and 

dependent pressures, the steady state water-oil flow equations and corresponding 

boundary conditions are reformulated as a series of differential equations up to 2nd order.  

These differential equations are solved numerically and the solutions are directly used to 

construct moments of phase pressure and capillary pressure.  We demonstrate the validity 

of the proposed KLME model by favorably comparing 1st and 2nd order approximations 

to Monte Carlo simulations. The significant computational efficiency of the KLME 

approach over Monte Carlo simulation is also illustrated. 
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1. Introduction 

Non-Aqueous Phase Liquids (NAPLs), such as chlorinated solvents, hydrocarbon fuels, 

and polychlorinated biphenyls, have been used extensively in private industry, military 

installations and Department of Energy (DOE) facilities. NAPLs may be leaking from a 

damaged or decaying storage vessel (e.g. in a gasoline station, refinery, dry-cleaning 

operation), improperly constructed storage and distribution systems, a waste disposal 

lagoon, or may be spilt during transport and use in a manufacturing process (e.g. during 

degreasing of metal parts, in the electronics industry to clean semiconductors, or in an 

airfield for cleaning jet engines). NAPL spills during transport and leaks from 

underground storage tanks have inevitably occurred and represent a major risk to water 

supply, since even a small amount of NAPLs can contaminate large volumes of 

groundwater. NAPL ganglia (blobs) trapped in the porous soil or rock matrix at residual 

saturation are a continuous source of contamination to the aquifer or the soil vapor, 

through dissolution or vaporization (Garg et al., 1999).  

To design a remediation scheme, it is important to understand at a basic level the 

physicochemical processes that control the movement and mass transfer of NAPLs in the 

subsurface, both in the unsaturated and the water-saturated regions. The conceptual 

models of a typical contaminant spill into porous and fractured media have been put 

forward by several researchers (Abriola, 1989; Mercer et al., 1990; Keller et al., 2000). In 

some cases, the contaminant is dissolved in water and thus travels through the aquifer as 

a solute. More typically a contaminant enters the subsurface as a liquid phase separated 

from the gaseous or aqueous phases present. NAPLs travel first through the unsaturated 

 3



zone, under three-phase (water, air, oil) flow conditions, displacing air and water. The 

variations in matrix permeability and capillarity, due to the heterogeneity of the porous 

medium, result in additional deviations from vertical flow.  Under some situation, less 

permeable layers (e.g. silt or clay lenses, or even tightly packed sand), or materials with 

smaller pores will make NAPL flow mostly in horizontal direction, until it encounters a 

path of less resistance. Microfractures in the soil matrix are also important in allowing the 

NAPL to flow through low-permeability lenses (Keller et al., 2000). NAPLs are trapped 

within the porous medium when the capillary forces are sufficiently strong to overcome 

the viscous and gravitational forces acting on the NAPLs. 

From this simplified description of the processes occurring as a NAPL moves through 

the subsurface, it is clear that soil heterogeneity plays a major role in the distribution of 

the spill, as well as in the transfer of NAPL mass to the surrounding phases (e.g. Keller 

and Chen, 2002). It is critical to understand how these processes are enhanced or limited 

by large variations in soil properties, including absolute permeability, porosity, fraction 

of organic content, capillary pressure-saturation and relative permeability-saturation 

relationships, soil density, etc. These properties may be treated as random space functions 

and the equations governing multiphase flow in these formations become stochastic. 

Solving the stochastic multiphase flow equations is a challenging task. 

In the last two decades, stochastic approaches to flow and transport in heterogeneous 

porous media have been extensively studied and developed, which are summarized by 

Dagan (1989), Gelhar (1993) and Zhang (2002). The most common approach is to solve 

such stochastic flow equations numerically by Monte Carlo simulation. Using this 

technique, a large number of equally probable random realizations of the soil properties 
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are generated using geostatistical techniques such as Gaussian sequential simulation. The 

flow equations can be solved numerically by a conventional deterministic numerical flow 

simulator for each realization, and the moments of the flow system output can be 

obtained by averaging the results from all realizations. This approach is conceptually 

straightforward, but it requires intensive computational effort since the number of 

realizations needed to adequately describe the flow system is relatively high. Moreover, 

the computational effort for each realization is large in order to solve high space-time 

fluctuations in random parameters with fine numerical space-time grids. Therefore, 

Monte Carlo simulations are primarily used as a comparative reference for direct methods 

of solution of stochastic flow equations, which allow one to compute statistical moments 

of hydrogeologic variables, such as fluid pressure and velocity, without the need for 

generating a large number of realizations of these variables.  

One direct approach is to formulate integro-differential moment equations with the aid 

of Green’s function, make some approximations and then solve the equations numerically.  

The idea is to apply the perturbation scheme first, and then write moment equations based 

on a Green’s function. This approach has been used extensively in the literature of flow 

in porous media (Dagan, 1989; Rubin and Dagan, 1988, 1989; Cheng and Lafe, 1991). 

Recently, exact integro-differential moment equations have been developed for steady 

state and transient flows in saturated porous media by Neuman and coworkers (Neuman 

and Orr, 1993; Tartakovsky and Neuman 1998; Guadagnini and Neuman, 1999). 

However, these equations cannot be solved without Monte Carlo simulations or closure 

approximations. 
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Another direct approach is to derive a system of partial differential moment equations 

governing the statistical moments of flow quantities in a straightforward manner and then 

solve them analytically or numerically. The moment equations are formulated based on 

perturbation expansion approaches (Bakr et al., 1978; Gutjahr et al., 1981). Analytical 

solutions to the differential moment equations of flow are available only for some special 

cases such as uniform mean flow in unbounded media (Dagan, 1989; Gelhar, 1993) and 

uniform mean flow in rectangular domains of stationary media (Osnes, 1995).  For real-

world applications with complex flow configurations, and boundary conditions, 

numerical methods have to be employed to solve the differential moment equations 

(Zhang, 1998).  

Compared to Monte Carlo simulation, direct approaches provide a more 

comprehensive and efficient method for analyzing flow system in heterogeneous media 

by representing the entire flow system by several stochastic parameters. Most of the 

previous and current stochastic modeling via direct methods have focused on steady or 

transient saturated flow, and single phase unsaturated flow. Little work has been done on 

stochastic modeling of these properties under the condition of multiphase flow, both due 

to the nonlinear character of the governing equations and their interdependence, as well 

as due to lack of extensive field data of properties representing spatial variability. Data 

limitations are being addressed by new advances in soil characterization technologies, for 

example using multiprobe cone penetrometers, geophysical methods, and inter-phase 

partitioning tracers (e.g. Kram et al., 2000).  Several researchers have recently proposed a 

few stochastic analyses of multiphase flow. Chang et al. (1995) and Abdin et al. (1997a, 

1997b) presented a spectral/perturbation approach to analyze two- and three-phase flow 
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stochastically. Ghanem et al. (1998) applied Karhunen-Loeve decomposition technology 

and polynomial chaos expansion to stochastic variables of two-phase flow and solved the 

corresponding moments numerically.   

Zhang and coworkers (Zhang, 1998, 1999; Zhang and Sun, 2000; Zhang and Lu, 2002) 

proposed the moment equation method based on a perturbation analysis by translating 

stochastic partial differential equations to partial differential moment equations, and 

solving them numerically. Recently, Zhang and Lu (2004) combined Karhunen-Loeve 

decomposition with Moment Equation methods, i.e., KLME, to obtain higher-order (>1) 

approximations of the hydraulic head and flux for saturated flow in randomly 

heterogeneous porous media, and solved the resulting equations numerically. Yang, et al. 

(2004) then applied KLME to saturated-unsaturated one-phase flow. In contrast with the 

polynomial chaos method (Ghanmen, 1998) and the conventional moment equation 

method (Zhang, 1998), the KLME method solves the deterministic coefficients of the 

dependent variable expansion series in different orders, and then constructs moments of 

the variables in different orders instead of solving the covariance equations. The KLME 

method has proven to be more efficient computationally than Monte Carlo and CME 

approach for saturated water flow and unsaturated water flow (Lu and Zhang, 2004; Yang 

et al., 2004).   

In this paper, we implement KLME for a two-phase (water-oil) steady-state flow 

system. Both the intrinsic permeability and pore size distribution are considered 

stochastic soil properties. Thus, we address the challenging issue of stochastic 

permeability and capillary pressures. First, we derive the differential equations using the 

KLME approach, and then we discretize and code them in a numerical solver called 
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STO-2PHASE.  We then obtain higher orders of the moments of stochastic output 

variables. Finally, we conduct two cases studies and perform a comparable Monte Carlo 

simulation in order to evaluate the limitations and validity of the KLME method applied 

in this study.  

2. Mechanics of two-phase flow in porous media 

We consider a steady water-oil flow in unsaturated porous media. The porous medium 

and fluids are considered incompressible and under isothermal conditions. The 

conservation equations and Darcy’s relationship can be written as (Bear, 1972): 

          (1) 
( ) 0,
( ) 0,

w

o

∇ ⋅ =
∇ ⋅ =

q x
q x

 
[ ]
[ ]

( ) ( ) ,

( ) ( ) ,
w w w w

o o o o

P

P

λ ρ

λ ρ

= − ∇ ⋅ +

= − ∇ ⋅ +

q x x g

q x x g
      (2) 

subject to boundary conditions 

 , 0( ) ( )w wP P=x x 0( ) ( )o oP P=x x ,  D∈Γx ,  (3) 

 ( ) , w wQ⋅ =q (x) n(x) x ( )o oQ⋅ =q (x) n(x) x ,  N∈Γx ,  (4) 

where ( ) ( ) /w rw wk k S wλ µ= x  and ( ) ( ) /o ro ok k S oλ µ= x  are water and oil phase mobility; qi 

is the water (i =w) and oil (i =o) flux; x is the position vector in 2- or 3-D; Pi is the i 

phase pressure; iρ  is the i phase density;  kri  is the i phase relative permeability; iµ  is the 

i phase dynamic viscosity; Pi0 is the constant i phase pressure on the Dirichlet boundary 

segment DΓ ; Qi  is the constant i phase flux across Neuman boundary segments ; SNΓ i is 

the i phase saturation; g is the  gravity vector; k is the  intrinsic permeability of porous 

media; n is the outward unit vector normal to the boundary NΓ . 
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Letting ( ) ln ( )w wZ λ=x x , ( ) ln ( )oZ oλ=x x , and combining (1) and (2) gives the 

governing flow equations as: 

 
2

12

( ) ( ) ( )
0w w w

w i
i ii

P Z P
g

x xx
ρ δ

⎡ ⎤∂ ∂ ∂
+ +⎢∂ ∂∂ ⎣ ⎦

x x x
=⎥ ,     (5) 

 
2

12
( ) ( ) ( ) 0o o o

o i
i ii

P Z P g
x xx

ρ δ
⎡ ⎤∂ ∂ ∂

+ +⎢∂ ∂∂ ⎣ ⎦

x x x
=⎥ ,     (6) 

subject to boundary conditions 

 , 0( ) ( )w wP P=x x 0( ) ( )o oP P=x x ,   D∈Γx  , (7) 

[ ]

[ ]

1

1

( )( )exp ( ) ( ),

( )( )exp ( ) ( ),

w
i w w i w

i

o
i o o i o

i

Pn Z g Q
x

Pn Z g Q
x

ρ δ

ρ δ

⎡ ⎤∂
+ = −⎢ ⎥∂⎣ ⎦

⎡ ⎤∂
+ = −⎢ ⎥∂⎣ ⎦

xx x

xx x

x

x
  N∈Γx , (8) 

where 1iδ  is the Krönecker delta function, which equals 1 when i is 1 (upward direction) 

or 0 otherwise. 

The constitutive relationships of relative permeability krw, kro versus saturation S or 

capillary pressure Pc have to be specified.  Empirical instead of theoretical relationships 

are commonly used. There are several postulated models, for example those based on van 

Genuchten’s relationships (1980). Here we adopt exponential-type constitutive 

relationships similar to those used by Chang et al. (1995): 

 [ ]exprw c c ck Pα β= − , [ ]1 expro c c ck α β= − − P ,    (9) 

where αc is the soil grain size distribution index; βc is the ratio of water surface tension to 

oil-water interfacial tension, and is considered as a deterministic constant, depending 

only on fluid properties. Typically the assumption is made that soil properties (k, αc) are 
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homogenous in the domain, which might seriously under- or over-predict the movement 

of NAPLs, and thus provides an inaccurate understanding of the extent of contamination. 

In this study, we treat k and αc as random fields subject to log normal distribution. For 

mathematical simplicity, let α =αcβc and βα =ln , then the relative permeabilities can be 

expressed as 

 [ ] ( )exp exp exprw c ck Pα ⎡= − = −⎣ Pβ ⎤⎦  ,     (10)  

[ ] ( )1 exp 1 exp expro c ck Pα Pβ⎡ ⎤= − − = − −⎣ ⎦ .     (11) 

The exponential functional relationship is used given that it allows a tractable solution 

to the flow equations. Abdin et al. (1997b) verified the applicability of these constitutive 

relationships in a series of comparisons with the widely used van Genuchten model (van 

Genuchten, 1980) using real soil properties.  Their results indicate a reasonable 

agreement between these two models. 

The difficulty in solving these stochastic equations (5) and (6) by Monte Carlo 

approach is the intensive computational effort since these are typically very large (many 

grid blocks are required for an accurate solution) matrix systems of highly nonlinear, 

discrete equations and large number of realizations required in MC. For this reason, we 

would like to resort to direct stochastic approaches instead of Monte Carlo methods to 

solve the stochastic multiphase flow system. 

3.  Karhunen-Loeve expansion of intrinsic permeability 

It has been known for a long time that there is a close connection between stochastic 

processes and orthogonal polynomials (Wiener, 1930). The approximate solution 

techniques based on classical orthogonal polynomials are generally known as spectral 
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methods. Karhunen-Loeve (KL) expansion of a stochastic process ( , )α θx , which was 

derived by several investigators independently (Karhunen, 1947; Loeve, 1948), is based 

on the spectral decomposition of the covariance function of α, ( , )Cαα x y , with a set of 

orthogonal polynomials (Courant and Hilbert, 1953). Here, x and y indicate spatial 

locations, while the argument θ  denotes the random nature of the corresponding quantity. 

Ghanem and Dham (1998) applied the KL expansion to decompose the log-transformed 

intrinsic permeability of the medium assuming normal distribution: ( , ) ln[ ( , )]Y kθ θ=x x , 

where k is the intrinsic permeability, x is the position in spatial domain D, and θ  belongs 

to the probability space Ω .  The log-transformed permeability can be written as: 

( , ) ( , ) '( , )Y Y Yθ θ θ= +x x x , where, ⋅  denotes the expected mean operator, and 

'( , )Y θx  represents the fluctuations around the mean. Then, the covariance of log intrinsic 

permeability can be expressed as ( , ) '( , ) '( , )YC Y Yθ θ=x y x y . ( , )YC x y is bounded, 

symmetrical and positive definite, and hence can be decomposed as 

1
( , ) ( ) ( )Y n n

n
C fλ

∞

=

=∑x nfy x y ,       (12) 

where nλ and are the eigenvalues and eigenvectors of the covariance kernel, 

respectively. Eigenvalues and eigenvectors can be solved from the integral equation 

( )nf x

( , ) ( ) ( )YD
C f d fλ=∫ x y x x y  .      (13) 

Owing to the symmetry and positive definiteness of the covariance function (Loeve, 

1977), the eigenvectors are orthogonal and form a complete set: 

( ) ( )n m nD
f f d mδ=∫ x x x ,       (14) 

where nmδ  is the Krönecker delta function.  
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The perturbation part of log intrinsic permeability can be expanded in terms of 

eigenfunctions as: 

1
'( , ) ( ) ( )n n n

n
Y θ ξ θ λ

∞

=

=∑x f x  ,      (15) 

where { ( )}nξ θ  forms a set of orthogonal random variables, and has properties of 

( ) 0nξ θ = , and ( ) ( )n m nmξ θ ξ θ δ= .  Because ( , )Y θx is assumed Gaussian distributed, 

( )iξ θ  forms a Gaussian vector, and any subset of ( )iξ θ  is jointly Gaussian.  

1 2 1( ) ( ) 0nξ θ ξ θ+ =L ,        (16) 

 
2

1 2
, 1

( ) ( ) ( ) ( )
n

n i
i j

jξ θ ξ θ ξ θ ξ θ
=

= ∑∏L .     (17) 

For some special types of covariance functions, analytical solution of eigenvalues and 

eigenfunctions can be found from (13).  In general cases, they have to be solved 

numerically via iterative methods or a Galerkin-type method (Ghanem and Spanos, 1991).  

The eigenvalues decrease monotonically, guaranteed by the symmetry of the covariance 

function (Ghanem and Dham, 1998). The rate of decay is subject to the correlation length 

of the intrinsic permeability field, i.e. the shorter the correlation length; the more terms 

are required in the expansions.  Zhang and Lu (2004) discussed this issue in detail in their 

application of KLME to saturated flow. 
 

4. Two-phase flow KL-based moment equations (KLME)  

Zhang and Lu (2004) pioneered the combination of the KL method with high-order 

perturbation methods to set up KL-based Moment Equations (KLME) for saturated flow. 

In this section, we apply the KLME approach to steady-state two-phase  (water-oil) flow, 

to derive higher-order approximations for the mean and variance of phase pressures. 
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The log-transformed phase mobility, ( ) ln ( )w wZ λ=x x , and ( ) ln ( )oZ oλ=x x can be 

written as: 

[ ]( ) ln ( ) ( ) ln exp ( ) ( )w w w cZ Yλ µ β= = − −x x x x P x ,    (18) 

[ ]{ }( ) ln ( ) ( ) ln ln 1 exp exp ( ) ( )o o o cZ Yλ µ β P⎡ ⎤= = − + − −⎣ ⎦x x x x x .  (19) 

The phase pressures, capillary pressure and phase mobility can be expressed as infinite 

series: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

(0) (1) (2)

(0) (1) (2)

(0) (1) (2)

,

,

,

w w w w

o o o o

c c c c

P P P P

P P P P

P P P P

= + + +

= + + +

= + + +

x x x x

x x x x

x x x x

L

L

L

     (20) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

(0) (1) (2)

(0) (1) (2)

,

,
w w w w

o o o o

Z Z Z Z

Z Z Z Z

= + + +

= + + +

x x x x

x x x x

L

L
     (21) 

where , , are terms of order ( )n
wP ( )n

oP ( )n
cP n

sσ  in a statistically sense. sσ  is the standard 

deviation of s = k, β.   ( )n
wZ and ( )n

oZ  (n = 0, 1, 2) are presented in Appendix A. 

Substituting (20) and (21) into (5) and (6), and collecting terms at the same order 

generates the differential equations for each order: 

Zeroth-order differential equations: 

2 (0) (0) (0)

12

2 (0) (0) (0)

12

( ) ( ) ( ) 0,

( ) ( ) ( ) 0,

w w w
w i

i ii

o o o
o i

i ii

P Z P g
x xx

P Z P g
x xx

ρ δ

ρ δ

⎡ ⎤∂ ∂ ∂
+ +⎢ ⎥∂ ∂∂ ⎣

⎡ ⎤∂ ∂ ∂
+ +⎢ ⎥∂ ∂∂ ⎣ ⎦

x x x

x x x

=
⎦

=

x

     (22) 

with boundaries 

 , ,   (0)
0( ) ( )w wP P=x x (0)

0( ) ( )o oP P=x D∈Γx ,  (23) 
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(0)

1 (0)

(0)

1 (0)

( ) ( )( ) ,
exp ( )

( ) ( )( ) ,
exp ( )

w w
i w i

i w

o o
i o i

i o

P Qn g
x Z

P Qn g
x Z

ρ δ

ρ δ

⎡ ⎤∂ −
+ =⎢ ⎥∂ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤∂ −
+ =⎢ ⎥∂ ⎡ ⎤⎣ ⎦ ⎣ ⎦

x xx
x

x xx
x

   N∈Γx .  (24) 

 

First-order differential equations:  

2 (1) (1) (0) (0) (1)

12

2 (1) (1) (0) (0) (1)

12

( ) ( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) ( ) 0,

w w w w w
w i

i i i ii

o o o o o
o i

i i i ii

P Z P Z Pg
x x x xx

P Z P Z Pg
x x x xx

ρ δ

ρ δ

⎡ ⎤∂ ∂ ∂ ∂ ∂
+ + +⎢ ⎥∂ ∂ ∂ ∂∂ ⎣ ⎦

⎡ ⎤∂ ∂ ∂ ∂ ∂
+ + +⎢ ⎥∂ ∂ ∂ ∂∂ ⎣ ⎦

x x x x x

x x x x x

=

=

   (25) 

with boundaries 

 ,  (1) ( ) 0wP =x (1) ( ) 0oP =x ,    D∈Γx ,  (26) 

(1)
(1)

(1)
(1)

( )( ) ( ) ( ) 0,

( )( ) ( ) ( ) 0,

w
i wi w

i

o
i oi o

i

Pn J Z
x

Pn J Z
x

⎡ ⎤∂
+ =⎢ ⎥∂⎣

⎡ ⎤∂
+ =⎢ ⎥∂⎣ ⎦

xx x

xx x x

⎦
x

    N∈Γx ,  (27) 

where  (0)
1( ) ( ) /wi w i w iJ P x gρ δ= ∂ ∂ +x x and (0)

1( ) ( ) /oi o i o iJ P x gρ δ= ∂ ∂ +x x . 

 

Second-order differential equations: 

2 (2) (2) (0) (1) (1) (0) (2)

12

2 (2) (2) (0) (1) (1) (0) (2

12

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) ( ) ( )

w w w w w w w
w i

i i i i i ii

o o o o o o o
o i

i i i i ii

P Z P Z P Z Pg
x x x x x xx

P Z P Z P Z Pg
x x x x xx

ρ δ

ρ δ

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + +⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂∂ ⎣ ⎦

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + +⎢ ⎥∂ ∂ ∂ ∂ ∂∂ ⎣ ⎦

x x x x x x x

x x x x x x

=

) ( ) 0,
ix

=
∂

x
(28) 

with boundaries 

 ,  (2) ( ) 0wP =x (2) ( ) 0oP =x ,    D∈Γx , (29) 
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(2) (1)
(1) (2)

(2) (1)
(1) (2)

( ) ( )( ) ( ) ( ) ( ) 0,

( ) ( )( ) ( ) ( ) ( ) 0,

w w
i w wi w

i i

o o
i o oi o

i i

P Pn Z J Z
x x

P Pn Z J Z
x x

⎡ ⎤∂ ∂
+ +⎢ ⎥∂ ∂⎣ ⎦

⎡ ⎤∂ ∂
+ +⎢ ⎥∂ ∂⎣ ⎦

x xx x x

x xx x x

=

=

x

x
 N∈Γx . (30) 

We assume that ,  can be expanded in terms of a set of orthogonal 

Gaussian random variables 

(1) ( )wP x (1) ( )oP x

nξ , n = 1, 2, …, as defined in the Karhunen-Loeve 

decomposition: 

 ,  ,    (31) (1) (1)
,

1
( ) ( )w n w

n
P Pξ

∞

=

= ∑x xn n x(1) (1)
,

1
( ) ( )o n o

n
P Pξ

∞

=

= ∑x

 where  and are deterministic functions to be determined. (1)
, ( )w nP x (1)

, ( )o nP x

To simplify the mathematical representation using KLME, we rewrite (15) as: 

1 1
( , ) ( ) ( ) ( )n n n n n

n n
Y fθ ξ θ λ ξ θ

∞ ∞

= =

′ = =∑ ∑x x ( )f x  ,    (32) 

where nλ  is included in ( )nf x , since eigenvalues and eigenfunctions are always 

coupled. To simplify mathematical expression, we will write ( )nf x  as in the 

following formulation.  Likewise, the KL expansion of 

( )nf x

( )β ′ x  is: 

 ,       (33) 
1

( , ) ( ) ( )n n
n

β θ ξ θ φ
∞

=

′ = ∑x x

where ( )nφ x , like , is the set of eigenfunctions of the covariance matrix of ( )nf x ( )β x . 

Substituting (31), (32), (33) and , (Appendix A) and their spatial 

derivatives into (25) yields the infinite series in terms of 

(1) ( )wZ x (1) ( )oZ x

nξ , whose summation equals 

zero. For example, the water phase equation in (25) becomes: 

 15



2 (1) (1)(0)
, ,(0)

2
1

(1) (0)
, (1) (0) (0)

, 0.

w n w nc G
n G c

n i i i ii

c n G n G n c
wi G c n wi c n c G G n

i i i i i i

P Y PP P
x x x xx

P f PJ P J P P
x x x x x x

αξ α

α α φα φ α

∞

=

⎧ ⎛ ⎞∂ ∂ ∂∂ ∂⎪ + − −⎨ ⎜ ⎟∂ ∂ ∂ ∂∂⎪ ⎝ ⎠⎩
⎫⎛ ⎞∂ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ⎪− − + − − −⎜ ⎟ ⎬⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎪⎝ ⎠ ⎭

∑

α φ =

(34) 

Owing to the orthogonality and independence of the set nξ , n = 1, 2, …, all coefficients 

of this infinite series have to be zero, which results in: 

2 (1) (1)(0)
, ,(0)

2

(1) (0)
, (1) (0) (0)

, ,

w n w nc G
G c

i i i ii

c n G n G n c
wi G c n wi c n c G G n

i i i i i

P Y PP P
x x x xx

P f PJ P J P P
x x x x x x

αα

α α φα φ α

⎡ ⎤∂ ∂ ∂∂ ∂
+ − −⎢ ⎥∂ ∂ ∂ ∂∂ ⎣ ⎦

⎛ ⎞∂ ⎛ ⎞∂ ∂ ∂ ∂ ∂
= − − − − −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ i

α φ

 (35) 

with boundaries 

 ,       (1)
, ( ) 0w nP =x D∈Γx ,  (36) 

(1)
, (1)

,

( )
( ) ( ) ( ) 0w n

i wi w n
i

P
n J Z

x
⎡ ⎤∂

+⎢ ∂⎣ ⎦

x
x x =⎥x ,    N∈Γx .  (37) 

Similarly, we can obtain the KLME for the oil pressure. 

2 (1) (1)(0)
, ,(0)

2

(1)
,(1) (1)

, ,

(0)
(0) (0) (0) ,

o n o nc G
G c

i i i ii

c nG
oi c n G G c n

i i i

n c n G
oi G n G c n c G n c

i i i i

P Y PPa aP
x x x xx

P aJ aP a P
x x x

i

f P aJ a a P a P P
x x x x

αα

α α α

φ αα φ α φ α φ

⎡ ⎤∂ ∂ ∂∂ ∂
+ + +⎢ ⎥∂ ∂ ∂ ∂∂ ⎣ ⎦
⎛ ⎞∂∂ ∂

= − + +⎜ ⎟
∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂
− + + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠x

∂
∂

   (38) 

with boundaries 

(1)
, ( ) 0o nP =x ,       D∈Γx ,  (39) 

(1)
, (1)

,

( )
( ) ( ) ( ) 0o n

i oi o n
i

P
n J Z

x
⎡ ⎤∂

+⎢ ∂⎣ ⎦

x
x x =⎥x ,    N∈Γx ,  (40) 
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where the decomposed first order phase mobilities are given from (A-7): 

       (41) 
( )
( )

(1) (1) (0)
, ,

(1) (1) (0)
, ,

( ) ,

( ) .

w n n G c n n c

o n n G c n n c

Z f P P

Z f a P P

α φ

α φ

= − +

= + +

x

x

According to the definitions of and ( )nf x ( )nφ x , all the driving terms in (35), (38) are 

proportional to eigenvalues of covariance functions of intrinsic permeability and pore 

size distribution, which decrease monotonically as n increases.  This guarantees that the 

contributions of  to , and  to  decrease with n. The KLME derivation of 

the second order pressures, , and , is presented in the Appendix B. 

(1)
,w nP (1)

wP (1)
,o nP (1)

oP

(2)
wP (2)

oP

Up to second-order in sσ , fluid pressure is approximated by 

 , .     (42)  
2

( )

0
( ) ( )i

w w
i

P P
=

≈ ∑x x
2

( )

0
( ) ( )i

o o
i

P P
=

≈ ∑x x

For the water pressure, the mean is approximated by 

(0) (1) (2) (0) (2)
,

1
( ) ( ) ( ) ( ) ( ) ( )w w w w w w jj

j
P P P P P P

∞

=

≈ + + = +∑x x x x x x    (43) 

From (42) and (43), the second order perturbation terms can be written as

 (1) (2) (2)( ) ( ) ( ) ( ) ( ) ( )w w w w w wP P P P P P′ = − ≈ + −x x x x x x    (44) 

The covariance of ,( )wP x ( )wP y can be derived as 

  (1) (1) (2) (2)
, , , ,

1 , 1
( ) ( ) ( ) 2 ( ) (

wP w n w n w jk w
n j k

C P P P P
∞ ∞

= =

= +∑ ∑x, )jky x y x y     (45) 

The covariance between Y, β  and  or , cross-covariance between  and  can be 

constructed in a similar manner. 

wP oP wP oP

One of the superiorities of the KLME approach relative to other stochastic methods is 

that, once we obtain ,  , l = 0,  1, 2, ….,  we can directly compute 
1 2

( )
, , , , ( )

l

l
w i i iP xL 1 2

( )
, , , , ( )

l

l
o i i iP xL
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the high-order mean and covariance of each phase pressure without solving equations for 

covariance and cross-covariance of phase pressure, log relative permeability required in 

the CME methods, hence it is more efficient computationally. 

5. Numerical Implementation 

The zeroth-order equations (22) are nonlinear and the first, second-order KLME (35, 

38, B-2, B-3) equations are coupled, and cannot be solved analytically. We use a finite 

difference scheme to solve them numerically. 

The final discretized equations can be expressed as 

  AP = R        (46) 

where A is the coefficient matrix, P is the solution vector for  and 

,  and R is a vector containing information about the RHS (right hand side) 

of each equation and the boundary conditions. The matrix A is the same for problem sets 

in different orders and only needs to be decomposed once.  The driving force R has to be 

substituted as many times as the number of different RHS vectors. The zeroth-order flow 

equations are nonlinear and coupled, and need to be solved in an iterative manner. The 

first- and second-order equations are linear but coupled, and also need necessary 

iterations to converge. The zeroth-order solution needs more iteration than the first- and 

second-order solutions to converge, because the zeroth-order equations are nonlinear 

while the higher-order equations are linear. Solving the higher-order equations requires 

all the lower-order solutions.  This two-dimensional finite difference scheme for 

stochastic two-phase flow has been implemented into a computer Fortran code called 

“STO-2PHASE”.  Currently, this code is capable of handling steady-state two-phase 

flow, with regular non-uniform grids features.  

(0) (1) (2)
, ,, ,w w n w jP P P k

k
(0) (1) (2)

, ,, ,o o n o jP P P
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6. Illustrative Examples 

Two examples are used to illustrate the validity of this approach for stochastic water-

oil flow in heterogeneous soil. In both cases the log-transformed intrinsic permeability Y 

and pore size distribution parameter β are assumed to be second-order stationary with a 

separable exponential covariance function: 

( ) 1 1 2 22

1 2

, exp
x y x y

Cω ω
ω ω

σ
η η

⎛ − −
= − −⎜

⎝ ⎠
x y

⎞
⎟      (47) 

where ω = Y or β, 2
ωσ  is the variance of ω, and iωη is the correlation length of ω in the ith 

direction. 

6.1 Baseline case 

 
In this first case, we start by determining how many first-order and second-order terms 

are sufficient to capture the uncertainty of the soil properties, and then show the validity 

of the proposed stochastic KLME model by comparing the KLME results to the Monte-

Carlo simulation. We consider a rectangular grid of 16 × 50 square elements in a vertical 

cross section (Fig. 1) having a height of 3.0 m and a width of 0.96 m. The size of 

elements is 0.06 m × 0.06 m. The boundary condition are specified as follows: (1) no 

flow at left and right sides (x2 = 0, x2 = 0.96 m); (2) constant deterministic water and oil 

infiltration rates Qw, Qo at the top (x1 = 3.0 m); and (3) water and oil phase pressure Pw, 

Po specified at the bottom of the domain. The input parameters are given in Table 1. 
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To investigate the number of terms that are sufficient to capture the uncertainty of the 

random field, and yet as few as possible to reduce the computational effort, we designed 

a series of numerical simulations with different number of the first-order terms (term1) 

and second-order terms (term2). Because capillary pressure is the coupled element 

between water phase and oil phase flow equations, as well as the key parameter in phase 

relative permeability model, the validity of capillary pressure solution can demonstrate 

sufficiently the validity of the output of the whole flow system.  Fig. 2 (a) shows a series 

of variance of capillary pressure along the central vertical line with term1 = 100, 150, 200, 

300, and 500 while fixing the number of the second-order terms to 60. There is little 

difference between the results from term1 = 300 and term1 = 500, compared with the 

differences among term1 = 100, 150, 200 and 300. It is apparent that increasing term1 

beyond 300 contributes little to explaining capillary pressure variance. Fixing term1 = 

300, we ran a series of simulations with term2 = 60, 70, 80, 90, 100, and 120. Fig. 2 (b) 

presents the results.  Beyond term2 = 100, the variance of capillary pressure increases 

only slightly.  Thus, the combination of term1 = 300 and term2 = 100 was chosen for 

KLME method for the comparison against Monte Carlo simulation.  

To test the validity of the KLME approach and the numerical implementation, we 

conducted 2000 Monte Carlo simulations. 2,000 2-D random soil properties fields were 

generated with the separable covariance function (47) using the Gaussian Sequential 

Simulation approach available in GSLIB (Deutsch and Journel, 1998).  The deterministic 

solver solved the 2,000 water, oil pressure and capillary pressure fields, and statistical 

moments were calculated based on these fields.  These statistics are considered true 

solutions that are used as a reference to compare our KLME approach at various orders. 
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As shown in Figure 3, the second-order KLME results match the MC simulation very 

well and improve on the lower-order solutions.   

Fig. 4 presents contour maps of water, oil and capillary pressure means. The means of 

water and oil pressure are specified at the lower boundary, and increase upward along the 

vertical direction approximately linearly.  The capillary pressure decreases with elevation, 

and remains almost constant in the area near the upper boundary, which is similar to 

gravity dominated flow (water) in unsaturated flow system.  The central vertical section 

of the capillary pressure in Fig. 3 clearly indicates this kind of trend. 

Fig. 5 presents contour maps of water, oil and capillary pressure variances. The 

variances are zero at the bottom boundary of constant pressure and increase in the vertical 

direction upward. In the horizontal direction, the pressure variances are largest at the two 

lateral boundaries and decrease toward the center of the domain, especially for capillary 

pressure. The behavior of capillary pressure variances in this case (water-oil) is similar to 

the head variance under steady state unsaturated flow (Zhang and Winter, 1998). 

The number of terms required to approximate  and  determine the 

computational effort of the KLME approach. As discussed above, we took 300 and 100 

terms for the first and second order, respectively.  To obtain , where 

(1) (2)
, ,,w n w jkP P (1) (2)

, ,,o n o jkP P

1 2

( )
, , ,... m

m
w i i iP 1,ji = n , the 

number of times required to solve an equation is ( 1) ( 1) / !mS n n n m m= + + −L . In our 

case, when m = 1, n = 300, so we need to solve the first-order equations for S1 = 300 

times, while S2 = 100*(100+1)/2 = 5050 times for m=2. Unlike saturated and unsaturated 

one phase flow, this two-phase flow is a coupled system, so that solving the linear 

discretized first- and second-order equations also requires a number of iterations.  With 

the particular solver that we used, solving for the zeroth-order solution needs about 50 
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iterations, whereas the first- and second-order solutions usually converge after 5 

iterations each, so the total number of runs for KLME is about 50+5*(300+5050) = 

26,800.  With a similar solver, each realization of the Monte Carlo (MC) simulation 

converges after about 100 iterations, since the parameter fields are not so smooth as in the 

KLME approach. Thus, 200,000 iterations are required for 2,000 MC simulations, which 

is nearly 8 times of the effort in the KLME approach. The actual run time for KLME is 1-

2 hours, while MC simulation requires 1-2 days in the same computer. For a larger 

domain, the increased simulation time might be quite significant. 

6.2 Case2: Larger 2
Yσ  

In this second case, we increase the variance of the log-transformed intrinsic 

permeability, 2
Yσ , from 0.25 (intrinsic permeability Coefficient of Variation, CV = 53%) 

to 0.81 (CV = 112%).  The large infiltration along with high permeability variance may 

cause divergence problem in the Monte Carlo simulations, so we decrease both water and 

oil infiltration to 1.0 x 10-10 m/s.  Fig. 6 presents the comparison of mean and variance of 

capillary pressure between up to second-order KLME simulations and 4,000 Monte Carlo 

simulations along the central vertical section.  Under this larger 2
Yσ , more Monte Carlo 

realizations (4,000) are required for the statistical moments to converge, while only more 

100 terms of the first-order (term1) are required for the KLME approach, hence the 

computing efficiency of the KLME approach over Monte Carlo approach is more 

apparent. As expected, the higher the order (0th, 1st or 2nd) of the KLME, the better the 

approximation to the Monte Carlo statistics. However, with the increase in 2
Yσ , the 

differences among the Monte Carlo simulation, the first- and second-order KLME are 
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greater than those in smaller 2
Yσ . The behavior of capillary pressure doesn’t appear to 

have a gravity-dominated flow regime as in Case 1, due to the smaller fluid infiltrations. 

However, the vertical spatial gradient of capillary pressure decreases significantly with 

elevation. 

Fig.7 and Fig. 8 present the contour map of means and variances of fluid pressures and 

capillary pressure using the KLME approach.  Owing to the smaller infiltration rate at the 

top boundary, the mean water, oil pressures decrease upward vertically, instead of 

increasing as in Case 1.  However, with gravitational force, the flow is still downward for 

water and oil. Capillary pressure decreases as in Case 1.  Generally, large fluxes or large 

variances of soil random variables will lead to large pressure head variances.  The 

variance of oil pressure shown in Fig. 8 is about 4 orders of magnitude smaller than that 

in Case 1, because the oil infiltration rate is 1/240 of Case 1 (1.0 x 10-10 m/s versus 2.4 x 

10-8 m/s), while 2
Yσ  increase only by a factor of 3.  The water pressure and capillary 

pressure variances change little from Case 1, because the water infiltration rate is similar 

to the first example (1.0 x 10-10 m/s vs. 6.8 x 10-9 m/s) and the effect of 2
Yσ  increase on 

water pressure variance can overcome the effect of water infiltration decrease. 

7. Summary and Conclusions 

A stochastic two-phase flow model was developed based on Karhunen-Loeve and 

polynomial expansions to evaluate higher-order moments for two-phase flow in randomly 

heterogeneous subsurface zone.  The log-transformed intrinsic permeability Y(x) and the 

soil pore size distribution parameter β(x) were assumed to be Gaussian random functions 

with the separable exponential covariance functions. Y(x) and β(x) were first decomposed 
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into the infinite series related to the eigenvalues and eigenfunctions of the covariance 

functions of Y(x) and β(x) as well as a set of standard Gaussian random variables { }nξ by 

Karhunen-Loeve expansions. Then, the fluid pressure and capillary pressure were 

decomposed into the series whose terms  are n( ) ( ) ( ), ,n n n
w o cP P P th order in terms of Yσ  or βσ . 

We then further expanded  into series in terms of the product of n Gaussian 

random variables used in Karhunen-Loeve expansion of Y(x) and β(x), which leads to 

sets of equations for calculating the deterministic coefficients in these expansions.  We 

developed a numerical code for the stochastic model and solve these coefficients, which 

were used to compute moments of fluid pressure and capillary pressure directly.  We 

demonstrated the KLME approach with two cases of steady-state water-oil flow in a two-

dimensional rectangular domain and compared the results with those from Monte Carlo 

simulations. The main findings of this paper are summarized as follows: 

( ) ( ) ( ), ,n n n
w o cP P P

1. The KLME method is applicable to stochastic analysis of multiphase flow and 

this makes it possible to evaluate higher-order flow moments with smaller 

computational effort. 

2. The KLME for two-phase flow was numerically implemented into a Fortran code 

STO-2PHASE, which can be used as a stochastic analysis tool for steady state 

two-phase flow and offers a template for further expansion of features, such as 

transient flow, three-phase flow, and other multiphase flow applications. 

3. The comparison of KLME results with Monte Carlo simulations indicates that this 

proposed stochastic approach and the executable model produce very similar 

results, and the KLME approach is much more efficient than MC simulations. 
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4. Unlike saturated or unsaturated flow, the water-oil two-phase flow is a coupled 

system, so all the zeroth-, first- and second-order equations need several iterations 

to converge on a solution. However, the first- and second-order discretized 

equations are linear and require less iteration than the zeroth-order equations, 

which are nonlinear. In addition, the left hand coefficient matrix is the same in 

zeroth-, first- and second-order perturbations equations. These features make the 

numerical modeling very efficient because it is not necessary to rebuild the 

coefficient matrix for different orders of the perturbation equations in every 

iteration calculation. 

The KLME approach is likely to have a significant application in large and complex 

heterogeneous multiphase systems, where uncertainty analysis requires new 

approaches to understand the implications of these non-linear, coupled systems. 
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Appendix A 
 

According to (18), (19), 

[ ]( ) ln ( ) ( ) ln exp ( ) ( )w w w cZ Yλ µ β= = − −x x x x P x , 

[ ]{ }( ) ln ( ) ( ) ln ln 1 exp exp ( ) ( )o o o cZ Yλ µ β P⎡ ⎤= = − + − −⎣ ⎦x x x x x .  (A-1) 

Y(x) and β(x) are the random inputs of the system and can be written as:  

 ( ) ( ) ( )Y Y Y ′= +x x x , 

 ( ) ( ) ( )β β β ′= +x x x ,       (A-2) 

where ( )Y x  and ( )β x  are the expected mean of Y(x) and β(x), and   and ( )Y ′ x ( )β′ x  

are the zero mean perturbation terms, which can be decomposed by the Karhunen-Loeve 

expansion presented in Section 3. 

In (A-1), 

( ) ( ) ( ) ( )
2

exp exp exp exp 1
2G
ββ β β β β α β
′⎛ ⎞

′ ′= + = = + +⎜
⎝ ⎠

′ ⎟ ,  (A-3) 

where (expG )α β= , and ( )exp β ′ is approximated by Taylor expansion.  

Substituting (A-2) and (A-3) into (A-1), one obtains a series of Z(x) and their spatial 

derivative in different orders. 

For the zero order, 

 
( )

(0) (0)

(0) (0)

( ) ( ) ln ( ) ( ),

( ) ( ) ln ln 1 exp ( ) ( ) ,
w w G c

o o G

Z Y P

Z Y P

µ α

µ α

= − −

c⎡ ⎤= − + − −⎣ ⎦

x x x x

x x x x
   (A-4) 

and 
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(0) (0)
(0)

(0) (0)
(0)

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( ) ,

w c
G c

i i i i

o c
G c

i i i i

YZ P P
x x x x

YZ Pa P
x x x x

αα

αα

∂∂ ∂ ∂
= − −

∂ ∂ ∂ ∂

∂

G

G⎡ ⎤∂ ∂
= + +

∂
⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

xx xx x

xx xx x x

x

x   (A-5) 

where 

(0)

(0)

exp ( ) ( )
( ) .

1 exp ( ) ( )
G c

G c

P
a

P

α

α

⎡ ⎤−⎣=
⎡ ⎤− −⎣ ⎦

x x
x

x x
⎦

c

      (A-6) 

To simplify the mathematical representation, we omit (x) in the first- and second-order 

equations; however note that every term in these equations is a function of space node 

(x).   

For the first order, 

( )
( )

(1) (1) (0)

(1) (1) (0)

( ) ,

( ) ,

w G c c

o G c

Z Y P P

Z Y a P P

α β

α β

′ ′= − +

′ ′= + +

x

x
      (A-7) 

and
 

 

( )

( )

(1) (1) (0)
(0) (1) (0)

(1) (1) (0)
(0) (1) (0)

(1) (0)

( )

( )

.

w c c G
G c c

i i i i i i

o c c G
G c c

i i i i i i

G c c
i

Z Y P P P P P
x x x x x x

Z Y P Pa P a P
x x x x x x

a P P
x

β αα β β

β α

c

cPα β β

α β

⎛ ⎞′ ′∂ ∂ ∂ ∂ ∂′ ′= − + + − +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
⎛ ⎞′ ′∂ ∂ ∂ ∂ ∂′ ′= + + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∂ ′⎡ ⎤+ +⎣ ⎦∂

x

x

 (A-8)
  

For the second order,  

[ ]

2
(2) (2) (1) (0)

2 2(2) (2) (1) (1)
21 22 23 24

( ) ,
2

( ) ,

w G c c c

o c c c

Z P P P

Z Z P Z P Z P Z

βα β

β

′⎛ ⎞
′= − + +⎜ ⎟

⎝ ⎠

β′ ′⎡ ⎤= + + +⎣ ⎦

x

x    (A-9) 

where 

22 (0
21( ) ,G G c

)Z a a Pα α= −x  
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2 22
22

1 1( ) ,
2 2G GZ a aα α= − −x  

2 2(0) 2 (0)
23( ) ,G G c G cZ a a P a Pα α α= − −x  

2 22 2(0) (0) 2 (0)
24

1 1 1( ) ,
2 2 2G c G c G cZ a P a P a Pα α α⎡ ⎤ ⎡= − − ⎤⎣ ⎦ ⎣x ⎦  

and 

( )

( )

(2) (2) (1)
(2) (1)

(2) (2) (1) 2(2) (1) (1)
21 21 22 22

(1)
2(1) (1)

23 23 24 24

( )

( ) 2

2 ,

w c c
c c

i i i i i

o c c
c c c

i i i

c
c c

i i i

Z P PP P
x x x x x

Z P PZ P dZ Z P P dZ
x x x

PZ P P dZ Z
x x x

α αα α

α αα α α

∂ ′∂ ∂′= − − − −
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
= + + +

∂ ∂ ∂

⎡ ⎤′ ′∂ ∂ ∂′ ′ ′+ + + + +⎢ ⎥∂ ∂ ∂⎣ ⎦

x

x

dZα′   (A-10) 

where

 
(0)

2 2(0) 2 2 (0)21
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G G c G G c
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⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
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APPENDIX B 
 
Following the same steps as the derivation of the first order pressures, , , 
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The 2nd order KLME equations can be derived from (28): 
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where the decomposed second order phase mobility is 
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Note that the above second order terms are written in a symmetric style. 
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Table 1     Soil and fluid properties and boundary conditions 

 

Parameter name Symbol Units Case 1 Case 2 

Water density ρw kg/m3   1000 1000 

Oil density ρo kg/m3 400 400 

Water viscosity µw Pa⋅s 1.0x10-3 1.0 x10-3

Oil viscosity µo Pa⋅s 6.5x10-4 6.5 x10-4

Mean log permeability <Y> ln(m2) -33.0 -33.0 

Mean log pore size distribution <β> ln(1/Pa) -9.0 -9.0 

Variance log permeability σY
2 - 0.25 0.81 

Variance log pore size distribution σβ
2 - 0.01 0.01 

Coefficient of variation (k)  CV(k) - 53% 112% 

Coefficient of variation (α) CV(α) - 10% 10% 

Correlation length ηY, ηβ m 0.3 0.3 

Upper boundary water flux Qw m/s 6.8x10-9 1.0x10-10

Upper boundary oil flux Qo m/s 2.4x10-8 1.0x10-10

Low boundary water pressure Pw Pa 1.0x105 1.0x105

Low boundary oil pressure Po Pa 1.16x105 1.5x105
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Fig.1 Domain and Boundary 

 

 35



 

Fig. 2.  Pc variance along central vertical cross-section:  (a) fixed term2=60, 
different term1;  (b) fixed term1=300, different term2. 
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Fig. 3. Comparison of capillary pressure (Pc) in Case 1  (along central vertical 
cross-section) between KLME and Monte Carlo simulation:  (a) mean Pc;  (b) 
variance of Pc. 
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Fig. 4. Contour map of mean fluid pressure and capillary pressure (Pa) in Case 1: 
(a) water phase; (b) oil phase; (c) capillary pressure. 
 
 

 

Fig. 5.  Contour map of variance of fluid pressure and capillary pressure in Case 1: 
(a) water phase; (b) oil phase; (c) capillary pressure. 
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Fig. 6. Comparison of capillary pressure (Pc) in Case 2  (along central vertical 
cross-section) between KLME and Monte Carlo (MC) simulation:  (a) mean Pc;  (b) 
variance Pc.  
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Fig. 7. Contour map of mean fluid pressure and capillary pressure (Pa) in Case 2: 
(a) water phase; (b) oil phase; (c) capillary pressure. 
 
 

 
 
Fig. 8.  Contour map of variance of fluid pressure and capillary pressure in Case 2: 

(a) water phase; (b) oil phase; (c) capillary pressure. 
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